-
Impacts of climate change on the future of biodiversity
-
Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g. phenology), space (e.g. range) and self (e.g. physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub- continental scales and we synthesise their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst- case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth.
Keywords
Biodiversity, climate change, species extinctions.
Located in
Resources
/
Climate Science Documents
-
Energetic and biomechanical constraints on animal migration distance
-
Animal migration is one of the great wonders of nature, but the factors that determine how far migrants travel remain poorly understood. We present a new quantitative model of animal migration and use it to describe the maximum migration distance of walking, swimming and flying migrants. The model combines biomechanics and metabolic scaling to show how maximum migration distance is constrained by body size for each mode of travel. The model also indicates that the number of body lengths travelled by walking and swimming migrants should be approximately invariant of body size. Data from over 200 species of migratory birds, mammals, fish, and invertebrates support the central conclusion of the model – that body size drives variation in maximum migration distance among species through its effects on metabolism and the cost of locomotion. The model provides a new tool to enhance general understanding of the ecology and evolution of migration.
Located in
Resources
/
Climate Science Documents
-
Biodiversity effects on ecosystem functioning change along environmental stress gradients
-
Positive relationship between biodiversity and ecosystem functioning has been observed in many studies, but how this relationship is affected by environmental stress is largely unknown. To explore this influence, we measured the biomass of microalgae grown in microcosms along two stress gradients, heat and salinity, and compared our results with 13 published case studies that measured biodiversity–ecosystem functioning relationships under varying environmental conditions. We found that positive effects of biodiversity on ecosystem functioning decreased with increasing stress intensity in absolute terms. However, in relative terms, increasing stress had a stronger negative effect on low-diversity communities. This shows that more diverse biotic communities are functionally less susceptible to environmental stress, emphasises the need to maintain high levels of biodiversity as an insurance against impacts of changing environmental conditions and sets the stage for exploring the mechanisms underlying biodiversity effects in stressed ecosystems.
Located in
Resources
/
Climate Science Documents
-
Maximizing return on conservation investment in the conterminous USA
-
Efficient conservation planning requires knowledge about conservation targets, threats to those targets, costs of conservation and the marginal return to additional conservation efforts. Systematic conservation planning typically only takes a small piece of this complex puzzle into account. Here, we use a return-on- investment (ROI) approach to prioritise lands for conservation at the county level in the conterminous USA. Our approach accounts for species richness, county area, the proportion of species’ ranges already protected, the threat of land conversion and land costs. Areas selected by a complementarity-based greedy heuristic using our full ROI approach provided greater averted species losses per dollar spent compared with areas selected by heuristics accounting for richness alone or richness and cost, and avoided acquiring lands not threatened with conversion. In contrast to traditional prioritisation approaches, our results high- light conservation bargains, opportunities to avert the threat of development and places where conservation efforts are currently lacking.
Keywords
Benefit cost ratio, conservation planning, economic cost, habitat protection, heuristic, land prices, reserve selection, resource allocation.
Located in
Resources
/
Climate Science Documents
-
Genetic diversity in widespread species is not congruent with species richness in alpine plant communities
-
The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation plan- ning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.
Keywords
alpine vascular plants, Alps, biodiversity conservation, Carpathians, genetic diversity, species richness.
Located in
Resources
/
Climate Science Documents
-
How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer
-
How populations respond to climate change depends on the interplay between life history, resource avail- ability, and the intensity of the change. Roe deer are income breeders, with high levels of allocation to reproduction, and are hence strongly constrained by the availability of high quality resources during spring. We investigated how recent climate change has influenced demographic processes in two populations of this widespread species. Spring began increasingly earlier over the study, allowing us to identify 2 periods with contrasting onset of spring. Both populations grew more slowly when spring was early. As expected for a long-lived and iteroparous species, adult survival had the greatest potential impact on population growth. Using perturbation analyses, we measured the relative contribution of the demographic parameters to observed variation in population growth, both within and between periods and populations. Within peri- ods, the identity of the critical parameter depended on the variance in growth rate, but variation in recruit- ment was the main driver of observed demographic change between periods of contrasting spring earliness. Our results indicate that roe deer in forest habitats cannot currently cope with increasingly early springs. We hypothesise that they should shift their distribution to richer, more heterogeneous landscapes to offset energetic requirements during the critical rearing stage.
Keywords
Age-structured populations, demographic change, income breeding, perturbation analysis, population growth, Recruitment, Stochastic environment, Survival.
Located in
Resources
/
Climate Science Documents
-
Global shifts towards positive species interactions with increasing environmental stress
-
The study of positive species interactions is a rapidly evolving field in ecology. Despite decades of research, controversy has emerged as to whether positive and negative interactions predictably shift with increasing environmental stress as hypothesised by the stress-gradient hypothesis (SGH). Here, we provide a synthesis of 727 tests of the SGH in plant communities across the globe to examine its generality across a variety of ecological factors. Our results show that plant interactions change with stress through an outright shift to facilitation (survival) or a reduction in competition (growth and reproduction). In a limited number of cases, plant interactions do not respond to stress, but they never shift towards competition with stress. These findings are consistent across stress types, plant growth forms, life histories, origins (invasive vs. native), climates, ecosystems and methodologies, though the magnitude of the shifts towards facilitation with stress is dependent on these factors. We suggest that future studies should employ standardised defini- tions and protocols to test the SGH, take a multi-factorial approach that considers variables such as plant traits in addition to stress, and apply the SGH to better understand how species and communities will respond to environmental change.
Keywords
Biotic interactions, community ecology, ecosystems and climates, environmental stress, facilitation, invasive species, meta-analysis, plant traits, the stress-gradient hypothesis.
Located in
Resources
/
Climate Science Documents
-
Persistent reduced ecosystem respiration after insect disturbance in high elevation forests
-
Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km2 valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6–7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8–10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon.
Keywords
Carbon balance, disturbance, ecosystem respiration, gross primary productivity, insect outbreak, lodgepole pine, mountain pine beetle, mountain West, subalpine forest.
Located in
Resources
/
Climate Science Documents
-
Alleles underlying larval foraging behaviour influence adult dispersal in nature
-
The dispersal and migration of organisms have resulted in the colonisation of nearly every possible habitat and ultimately the extraordinary diversity of life. Animal dispersal tendencies are commonly heterogeneous (e.g. long vs. short) and non-random suggesting that phenotypic and genotypic variability between individuals can contribute to population-level heterogeneity in dis- persal. Using laboratory and field experiments, we demonstrate that natural allelic variation in a gene underlying a foraging polymorphism in larval fruit flies (for), also influences their dispersal tendencies as adults. Rover flies (forR; higher foraging activity) have consistently greater dispersal tendencies and are more likely to disperse longer distances than sitter flies (fors; lower foraging activity). Increasing for expression in the brain and nervous system increases dispersal in sitter flies. Our study supports the notion that variation in dispersal can be driven by intrinsic variation in food-dependent search behaviours and confirms that single gene pleiotropic effects can contrib- ute to population-level heterogeneity in dispersal.
Located in
Resources
/
Climate Science Documents
-
Rapid growth in CO2 emissions after the 2008–2009 global financial crisis.pdf
-
1st paragraph: Global carbon dioxide emissions from fossil-fuel combustion and cement production grew 5.9% in 2010, surpassed 9 Pg of carbon (Pg C) for the first time, and more than offset the 1.4% decrease in 2009. The impact of the 2008–2009 global financial crisis (GFC) on emissions has
been short-lived owing to strong emissions growth in emerging economies, a return to emissions growth in developed economies, and an increase in the fossil-fuel intensity of the world economy.
Located in
Resources
/
Climate Science Documents