Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4417 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Higgins 1931.pdf
Located in Resources / TRB Library / HEA-HOL
File PDF document Higgins 1978.pdf
Located in Resources / TRB Library / HEA-HOL
File PDF document High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years
The last two abrupt warmings at the onset of our present warm interglacial period, interrupted by the Younger Dryas cooling event, were investigated at high temporal resolution from the North Greenland Ice Core Project ice core. The deuterium excess, a proxy of Greenland precipitation moisture source, switched mode within 1 to 3 years over these transitions and initiated a more gradual change (over 50 years) of the Greenland air temperature, as recorded by stable water isotopes. The onsets of both abrupt Greenland warmings were slightly preceded by decreasing Greenland dust deposition, reflecting the wetting of Asian deserts. A northern shift of the Intertropical Convergence Zone could be the trigger of these abrupt shifts of Northern Hemisphere atmospheric circulation, resulting in changes of 2 to 4 kelvin in Greenland moisture source temperature from one year to the next.
Located in Resources / Climate Science Documents
File PDF document Higher effect of plant species diversity on productivity in natural than artificial ecosystems
Current and expected changes in biodiversity have motivated major experiments, which reported a positive relationship be- tween plant species diversity and primary production. As a first step in addressing this relationship, these manipulative experi- ments controlled as many potential confounding covariables as possible and assembled artificial ecosystems for the purpose of the experiments. As a new step in this endeavor, we asked how plant species richness relates to productivity in a natural ecosystem. Here, we report on an experiment conducted in a natural ecosys- tem in the Patagonian steppe, in which we assessed the biodiver- sity effect on primary production. Using a plant species diversity gradient generated by removing species while maintaining con- stant biomass, we found that aboveground net primary production increased with the number of plant species. We also found that the biodiversity effect was larger in natural than in artificial ecosys- tems. This result supports previous findings and also suggests that the effect of biodiversity in natural ecosystems may be much larger than currently thought. biodiversity 􏰚 carbon cycle 􏰚 ecosystem functioning 􏰚 Patagonian steppe 􏰚 resource partitioning
Located in Resources / Climate Science Documents
File PDF document Higher Hydroclimatic Intensity with Global Warming
Because of their dependence on water, natural and human systems are highly sensitive to changes in the hydrologic cycle. The authors introduce a new measure of hydroclimatic intensity (HY-INT), which integrates metrics of precipitation intensity and dry spell length, viewing the response of these two metrics to global warming as deeply interconnected. Using a suite of global and regional climate model experiments, it is found that increasing HY-INT is a consistent and ubiquitous signature of twenty-first-century, greenhouse gas– induced global warming. Depending on the region, the increase in HY-INT is due to an increase in precipitation intensity, dry spell length, or both. Late twentieth-century observations also exhibit dominant positive HY-INT trends, providing a hydroclimatic signature of late twentieth-century warming. The authors find that increasing HY-INT is physically consistent with the response of both precipitation intensity and dry spell length to global warming. Precipitation intensity increases because of increased atmospheric water holding capacity. However, increases in mean precipitation are tied to increases in surface evaporation rates, which are lower than for atmospheric moisture. This leads to a reduction in the number of wet days and an increase in dry spell length. This analysis identifies increasing hydroclimatic intensity as a robust integrated response to global warming, implying increasing risks for systems that are sensitive to wet and dry extremes and providing a potential target for detection and attribution of hydroclimatic changes.
Located in Resources / Climate Science Documents
File PDF document Higher origination and extinction rates in larger mammals
Do large mammals evolve faster than small mammals or vice versa? Because the answer to this question contributes to our understanding of how life-history affects long-term and large-scale evolutionary patterns, and how microevolutionary rates scale-up to macroevolu- tionary rates, it has received much attention. A satisfactory or con- sistent answer to this question is lacking, however. Here, we take a fresh look at this problem using a large fossil dataset of mammals from the Neogene of the Old World (NOW). Controlling for sampling biases, calculating per capita origination and extinction rates of boundary-crossers and estimating survival probabilities using cap- ture-mark-recapture (CMR) methods, we found the recurring pattern that large mammal genera and species have higher origination and extinction rates, and therefore shorter durations. This pattern is surprising in the light of molecular studies, which show that smaller animals, with their shorter generation times and higher metabolic rates, have greater absolute rates of evolution. However, higher molecular rates do not necessarily translate to higher taxon rates because both the biotic and physical environments interact with phenotypic variation, in part fueled by mutations, to affect origina- tion and extinction rates. To explain the observed pattern, we propose that the ability to evolve and maintain behavior such as hibernation, torpor and burrowing, collectively termed ‘‘sleep-or- hide’’ (SLOH) behavior, serves as a means of environmental buffering during expected and unexpected environmental change. SLOH be- havior is more common in some small mammals, and, as a result, SLOH small mammals contribute to higher average survivorship and lower origination probabilities among small mammals. body size 􏰚 environmental buffering 􏰚 metabolism 􏰚 Neogene mammals 􏰚 turnover
Located in Resources / Climate Science Documents
File PDF document Highly episodic fire and erosion regime over the past 2,000 y in the Siskiyou Mountains, Oregon
Fire is a primary mode of natural disturbance in the forests of the Pacific Northwest. Increased fuel loads following fire suppression and the occurrence of several large and severe fires have led to the perception that in many areas there is a greatly increased risk of high-severity fire compared with presettlement forests. To recon- struct the variability of the fire regime in the Siskiyou Mountains, Oregon, we analyzed a 10-m, 2,000-y sediment core for charcoal, pollen, and sedimentological data. The record reveals a highly episodic pattern of fire in which 77% of the 68 charcoal peaks before Euro-American settlement cluster within nine distinct peri- ods marked by a 15-y mean interval. The 11 largest charcoal peaks are significantly related to decadal-scale drought periods and are followed by pulses of minerogenic sediment suggestive of rapid sediment delivery. After logging in the 1950s, sediment load was increased fourfold compared with that from the most severe presettlement fire. Less severe fires, marked by smaller charcoal peaks and no sediment pulses, are not correlated significantly with drought periods. Pollen indicators of closed forests are consistent with fire-free periods of sufficient length to maintain dense forest and indicate a fire-triggered switch to more open conditions during the Medieval Climatic Anomaly. Our results indicate that over millennia fire was more episodic than revealed by nearby shorter tree-ring records and that recent severe fires have precedents during earlier drought episodes but also that sediment loads resulting from logging and road building have no precedent in earlier fire events. historical fire | climate variability | ecological resilience | logging | sediment charcoal
Located in Resources / Climate Science Documents
File PDF document Hildreth 1962.pdf
Located in Resources / TRB Library / HEA-HOL
File PDF document Hill et al 1974.pdf
Located in Resources / TRB Library / HEA-HOL
File PDF document Hill Larvae.pdf
Located in Resources / TRB Library / HEA-HOL