-
Impacts of mountaintop mining on terrestrial ecosystem integrity: identifying landscape thresholds for avian species in the central Appalachians, United States
-
Reclaimed mine-dominated landscapes (less forest and more grassland/shrubland cover) elicited more negative (57 %) than positive (39 %) species responses. Negative thresholds for each landscape metric generally occurred at lower values than positive thresholds, thus negatively responding species were
detrimentally affected before positively responding species benefitted. Forest interior birds generally
responded negatively to landscape metric thresholds, interior edge species responses were mixed, and early
successional birds responded positively. The forest interior guild declined most at 4 % forest loss, while
the shrubland guild increased greatest after 52 % loss
Located in
Resources
/
Climate Science Documents
-
Are conservation organizations configured for effective adaptation to global change?
-
Conservation organizations must adapt to respond to the ecological impacts of global change. Numerous
changes to conservation actions (eg facilitated ecological transitions, managed relocations, or increased corridordevelopment) have been recommended, but some institutional restructuring within organizations may also be needed. Here we discuss the capacity of conservation organizations to adapt to changing environmental
conditions, focusing primarily on public agencies and nonprofits active in land protection and management
in the US. After first reviewing how these organizations anticipate and detect impacts affecting target
species and ecosystems, we then discuss whether they are sufficiently flexible to prepare and respond by reallocating funding, staff, or other resources. We raise new hypotheses about how the configuration of different
organizations enables them to protect particular conservation targets and manage for particular biophysical
changes that require coordinated management actions over different spatial and temporal scales. Finally, we
provide a discussion resource to help conservation organizations assess their capacity to adapt.
Located in
Resources
/
Climate Science Documents
-
A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests
-
Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the
future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with
climate change could fundamentally alter the composition, structure, and biogeography of forests in
many regions. Of particular concern are potential increases in tree mortality associated with climateinduced
physiological stress and interactions with other climate-mediated processes such as insect
outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that
lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of
climate-driven tree mortality globally. Here we present the first global assessment of recent tree
mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of
climate change, studies compiled here suggest that at least some of the world’s forested ecosystems
already may be responding to climate change and raise concern that forests may become increasingly
vulnerable to higher background tree mortality rates and die-off in response to future warming and
drought, even in environments that are not normally considered water-limited. This further suggests
risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric
feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently
hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a
globally coordinated observation system. Overall, our review reveals the potential for amplified tree
mortality due to drought and heat in forests worldwide.
Located in
Resources
/
Climate Science Documents
-
Resampling Methods for Evaluating Classification Accuracy of Wildlife Habitat Models
-
Predictive models of wildlife-habitat relationships often have been developed without being tested The
apparent classification accuracy of such models can be optimistically biased and misleading. Data resampling methods exist that yield a more realistic estimate of model classification accuracy. These methods are simple and require no new sample data. We illustrate these methods (cross-validation.
jackknife resampling, and bootstrap resampling) with computer simulation to demonstrate the increase in precision of the estimate. The bootstrap method is then applied to field data as a technique for model comparison We recommend that biologists use some resampling procedure to evaluatewildlife habitat models prior to field evaluation.
Located in
Resources
/
Climate Science Documents
-
Scaling up from gardens: biodiversity conservation in urban environments
-
As urbanisation increases globally and the natural environment becomes increasingly fragmented, the
importance of urban green spaces for biodiversity conservation grows. In many countries, private gardens area major component of urban green space and can provideconsiderable biodiversity benefits. Gardens and
adjacent habitats form interconnected networks and a landscape ecology framework is necessary to understand the relationship between the spatial configuration of garden patches and their constituent biodiversity. A scale-dependent tension is apparent in garden management, whereby the individual garden is much smaller than the unit of management needed to retain viable populations. To overcome this, here we suggest mechanisms for encouraging ‘wildlife-friendly’ management of collections of gardens across scales from the neighbourhood to the city.
Located in
Resources
/
Climate Science Documents
-
Scenarios of future land use change around United States’ protected areas
-
Land use change around protected areas can diminish their conservation value, making it important to
predict future land use changes nearby. Our goal was to evaluate future land use changes around protected
areas of different types in the United States under different socioeconomic scenarios. We analyzed
econometric-based projections of future land use change to capture changes around 1260 protected
areas, including National Forests, Parks, Refuges, and Wilderness Areas, from 2001 to 2051, under different
land use policies and crop prices. Our results showed that urban expansion around protected areas
will continue to be a major threat, and expand by 67% under business-as-usual conditions.
Concomitantly, a substantial number of protected areas will lose natural vegetation in their surroundings.
National land-use policies or changes in crop prices are not likely to affect the overall pattern of land use,
but can have effects in certain regions. Discouraging urbanization through zoning, for example, can
reduce future urban pressures around National Forests and Refuges in the East, while the implementation
of an afforestation policy can increase the amount of natural vegetation around some Refuges throughout
the U.S. On the other hand, increases in crop prices can increase crop/pasture cover around some protected
areas, and limit the potential recovery of natural vegetation. Overall, our results highlight that future
land-use change around protected areas is likely to be substantial but variable among regions and
protected area types. Safeguarding the conservation value of protected areas may require serious consideration of threats and opportunities arising from future land use.
Located in
Resources
/
Climate Science Documents
-
A long-term perspective on a modern drought in the American Southeast
-
The depth of the 2006–9 drought in the humid, southeastern US left several metropolitan areas
with only a 60–120 day water supply. To put the region’s recent drought variability in a long-term
perspective, a dense and diverse tree-ring network—including the first records throughout the
Apalachicola–Chattahoochee–Flint river basin—is used to reconstruct drought from 1665 to 2010
CE. The network accounts for up to 58.1% of the annual variance in warm-season drought during
the 20th century and captures wet eras during the middle to late 20th century. The reconstruction
shows that the recent droughts are not unprecedented over the last 346 years. Indeed, droughts of
extended duration occurred more frequently between 1696 and 1820. Our results indicate that the
era in which local and state water supply decisions were developed and the period of instrumental
data upon which it is based are amongst the wettest since at least 1665. Given continued growth
and subsequent industrial, agricultural and metropolitan demand throughout the southeast, insights
from paleohydroclimate records suggest that the threat of water-related conflict in the region has
potential to grow more intense in the decades to come.
Located in
Resources
/
Climate Science Documents
-
Invited Review: Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities
-
By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land-use activities affect climate. Although long recognized scientifically as being important, these so-called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land-use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface
biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade-offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region.
Located in
Resources
/
Climate Science Documents
-
Reconciling nature conservation and traditional farming practices: a spatially explicit framework to assess the extent of High Nature Value farmlands in the European countryside
-
Over past centuries, European landscapes have been shaped by human management. Traditional, low intensity agricultural practices, adapted to local climatic, geographic, and environmental conditions, led to a rich, diverse cultural and natural heritage, reflected in a wide range of rural landscapes, most of which were preserved until the advent of industrialized agriculture (Bignal & McCracken 2000; Paracchini et al. 2010; Oppermann et al. 2012). Agricultural landscapes currently account for half of Europe’s territory (Overmars et al. 2013), with ca. 50% of all species relying on agricultural habitats at least to some extent (Kristensen 2003; Moreira et al. 2005; Halada et al. 2011). Due to their acknowledged role in the maintenance of high levels of biodiversity, low-intensity farming systems have been highlighted as critical to nature conservation and protection of the rural environment (Beaufoy et al. 1994; Paracchini et al. 2010; Halada et al.2011; Egan & Mortensen 2012).
Located in
Resources
/
Climate Science Documents
-
Fear of failure in conservation: The problem and potential solutions to aid conservation of extremely small populations
-
The potential for extirpation of extremely small populations (ESPs) is high due to their vulnerability to
demographic and environmental stochasticity and negative impacts of human activity. We argue that
conservation actions that could aid ESPs are sometimes delayed because of a fear of failure. In human
psychology, the fear of failure is composed of several distinct cognitive elements, including ‘‘uncertainty
about the future’’ and ‘‘upsetting important others.’’ Uncertainty about the future is often driven by information obstacles in conservation: information is either not easily shared among practitioners or information is lacking. Whereas, fear of upsetting important others can be due to apprehension about angering constituents, peers, funders, and other stakeholders. We present several ways to address these fears in hopes of improving the conservation process. We describe methods for increased information sharing and improved decision-making in the face of uncertainty, and recommend a shift in focus to cooperative actions and improving methods for evaluating success. Our hope is that by tackling stumbling blocks due to the apprehension of failure, conservation and management organizations can take steps to move from fear to action.
Located in
Resources
/
Climate Science Documents