Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4417 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Identifying refugia from climate change
This article highlights how the loose definition of the term ‘refugia’ has led to discrepancies in methods used to assess the vulnerability of species to the current trend of rising global temperatures. The term ‘refugia’ is commonly used without distinguishing between macrorefugia and microrefugia, ex situ refugia and in situ refugia, glacial and interglacial refugia or refugia based on habitat stability and refugia based on climatic stability. It is not always clear which definition is being used, and this makes it difficult to assess the appropriateness of the methods employed. For example, it is crucial to develop accurate fine-scale climate grids when identifying microrefugia, but coarse-scale macroclimate might be adequate for determining macrorefugia. Similarly, identifying in situ refugia might be more appropriate for species with poor dispersal ability but this may overestimate the extinction risk for good dispersers. More care needs to be taken to properly define the context when referring to refugia from climate change so that the validity of methods and the conservation significance of refugia can be assessed. Keywords Bioclimatic envelope models, climatic stability, conservation biogeography, cryptic refugia, ecological niche models, extinction risk, interglacial refugia, macrorefugia, microclimate, microrefugia.
Located in Resources / Climate Science Documents
File PDF document Identifying the World’s Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals
Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11– 15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area- specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.
Located in Resources / Climate Science Documents
Video Igniting Inspiration for Women in Fire
If our use of fire for managing lands is to improve and expand in the United States, it will need to involve more women and diverse perspectives. Thanks to programs like Women-in-Fire Prescribed Fire Training Exchanges (WTREX), more women are participating in and leading controlled burns.
Located in Training / Videos, podcasts, multimedia / Videos
File PDF document Ikenoue Kafuku.pdf
Located in Resources / TRB Library / HUE-JOH
Organization ECMAScript program Illinois Division of Forestry Resources
It is the mission of the Illinois Division of Forestry Resources to protect, perpetuate, restore, conserve, and manage the forest and related resources of Illinois, both public and private, rural and urban; and to ensure for future generations the greatest economic, scientific, and social benefits that can only be provided through a forest ecological system.
Located in LP Members / Organizations Search
File PDF document Illuminating the Modern Dance of Climate and CO2
Records of Earth’s past climate imply higher atmospheric carbon dioxide concentrations in the future 19 SEPTEMBER 2008 VOL 321 SCIENCE
Located in Resources / Climate Science Documents
Image Gallery
Images
Photo gallery highlighting the landscapes, habitats, species, and conservation work taking place within the Landscape Partnership.
Located in Resources / Images
Images
Image JPEG image Imitator salamander, melanistic phase_squamatologist
Imitator salamander
Located in Vulnerability / Climate Change Vulnerability / Climate Change Vulnerability Assessment Photo Gallery