Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4417 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
Community Preparation and Response
Communities play a crucial role in wildfire preparedness and response. While professionals and practitioners can help communities prepare and respond to wildfires, community members ultimately decide what actions they are willing and able to take. Community members are often the best ambassadors of wildfire messaging and these resources will be helpful not only to professionals working to educate and assist communities in wildfire resilience, but to community members doing the same work.
Located in Wildfire
File PDF document Comparing carbon sequestration in temperate freshwater wetland communities
High productivity and waterlogged conditions make many freshwater wetlands significant carbon sinks. Most wet- land carbon studies focus on boreal peatlands, however, with less attention paid to other climates and to the effects of hydrogeomorphic settings and the importance of wetland vegetation communities on carbon sequestration. This study compares six temperate wetland communities in Ohio that belong to two distinct hydrogeomorphic types: an isolated depressional wetland site connected to the groundwater table, and a riverine flow-through wetland site that receives water from an agricultural watershed. Three cores were extracted in each community and analyzed for total carbon content to determine the soil carbon pool. Sequestration rates were determined by radiometric dating with 137Cs and 210Pb on a set of composite cores extracted in each of the six communities. Cores were also extracted in uplands adjacent to the wetlands at each site. Wetland communities had accretion rates ranging from 3.0 to 6.2 mm yr␣1. The depressional wetland sites had higher (P < 0.001) organic content (146 ± 4.2 gC kg␣1) and lower (P < 0.001) bulk density (0.55 ± 0.01 Mg m␣3) than the riverine ones (50.1 ± 6.9 gC kg␣1 and 0.74 ± 0.06 Mg m␣3). The soil carbon was 98–99% organic in the isolated depressional wetland communities and 85–98% organic in the riv- erine ones. The depressional wetland communities sequestered 317 ± 93 gC m␣2 yr␣1, more (P < 0.01) than the river- ine communities that sequestered 140 ± 16 gC m␣2 yr␣1. The highest sequestration rate was found in the Quercus palustris forested wetland community (473 gC m␣2 yr␣1), while the wetland community dominated by water lotus (Nelumbo lutea) was the most efficient of the riverine communities, sequestering 160 gC m␣2 yr␣1. These differences in sequestration suggest the importance of addressing wetland types and communities in more detail when assessing the role of wetlands as carbon sequestering systems in global carbon budgets. Keywords: 137Cs, 210Pb, carbon accumulation, Gahanna Woods, Nelumbo lutea, Old Woman Creek, Phragmites australis, Quercus palustris, wetland community, wetland hydrgeomorphology
Located in Resources / Climate Science Documents
File PDF document Competitive and demographic leverage points of community shifts under climate warming
Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species’ responses are likely to drive shifts in the composition of a space- limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the impor- tance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identify- ing processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understand- ing of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns.
Located in Resources / Climate Science Documents
File PDF document Complexity of Coupled Human and Natural Systems
Integrated studies of coupled human and natural systems reveal new and complex patterns and processes not evident when studied by social or natural scientists separately. Synthesis of six case studies from around the world shows that couplings between human and natural systems vary across space, time, and organizational units. They also exhibit nonlinear dynamics with thresholds, reciprocal feedback loops, time lags, resilience, heterogeneity, and surprises. Furthermore, past couplings have legacy effects on present conditions and future possibilities.
Located in Resources / Climate Science Documents
File PDF document Coney 1991.pdf
Located in Resources / TRB Library / CLA-COO
File PDF document Coney 1997.pdf
Located in Resources / TRB Library / COO-CVA
File PDF document Conifer regeneration following stand-replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA
Climate change is expected to increase disturbances such as stand-replacing wildfire in many ecosystems, which have the potential to drive rapid turnover in ecological communities. Ecosystem recovery, and therefore maintenance of critical structures and functions (resilience), is likely to vary across environmental gradients such as moisture availability, but has received little study. We examined conifer regeneration a decade following complete stand-replacing wildfire in dry coniferous forests spanning a 700 m elevation gradient where low elevation sites had relatively high moisture stress due to the combination of high temperature and low precipitation. Conifer regeneration varied strongly across the elevation gradient, with little tree regeneration at warm and dry low elevation sites. Logistic regression models predicted rapid increases in regeneration across the elevation gradient for both seedlings of all conifer species and ponderosa pine seedlings individually. This pattern was especially pronounced for well-established seedlings (P38 cm in height). Graminoids dominated lower elevation sites following wildfire, which may have added to moisture stress for seedlings due to competition for water. These results suggest moisture stress can be a critical factor limiting conifer regeneration following stand- replacing wildfire in dry coniferous forests, with predicted increases in temperature and drought in the coming century likely to increase the importance of moisture stress. Strongly moisture limited forested sites may fail to regenerate for extended periods after stand-replacing disturbance, suggesting these sites are high priorities for management intervention where maintaining forests is a priority.
Located in Resources / Climate Science Documents
Encompassing New England’s largest river system, the Connecticut River watershed provides important habitat for a diversity of fish, wildlife and plants — from iconic species like bald eagle and black bear to federally threatened and endangered species like shortnose sturgeon, piping plover, and dwarf wedgemussel.
Located in Resources
File PDF document Conner 1907.pdf
Located in Resources / TRB Library / CLA-COO
File PDF document Conner 1909.pdf
Located in Resources / TRB Library / CLA-COO