Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4417 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document Local climatic drivers of changes in phenology at a boreal-temperate ecotone in eastern North America
Ecosystems in biogeographical transition zones, or ecotones, tend to be highly sensitive to climate and can provide early indications of future change. To evaluate recent climatic changes and their impacts in a boreal-temperate ecotone in eastern North America, we analyzed ice phenology records (1975–2007) for five lakes in the Adirondack Mountains of northern New York State. We observed rapidly decreasing trends of up to 21 days less ice cover, mostly due to later freeze-up and partially due to earlier break-up. To evaluate the local drivers of these lake ice changes, we modeled ice phenology based on local climate data, derived climatic predictors from the models, and evaluated trends in those predictors to determine which were responsible for observed changes in lake ice. November and Decem- ber temperature and snow depth consistently predicted ice-in, and recent trends of warming and decreasing snow during these months were consistent with later ice formation. March and April temperature and snow depth consistently predicted ice-out, but the absence of trends in snow depth during these months, despite concurrent warming, resulted in much weaker trends for ice-out. Recent rates of warming in the Adirondacks are among the highest regionally, although with a different seasonality of changes (early winter > late winter) that is consistent with other lake ice records in the surrounding area. Projected future declines in snow cover could create positive feedbacks and accelerate current rates of ice loss due to warming. Climate sensitivity was greatest for the larger lakes in our study, including Wolf Lake, considered one of the most ecologically intact ‘wilderness lakes’ in eastern North America. Our study provides further evidence of climate sensitivity of the boreal-temperate ecotone of eastern North America and points to emergent conservation challenges posed by climate change in legally protected yet vulnerable landscapes like the Adirondack Park.
Located in Resources / Climate Science Documents
File PDF document Spatially and temporally consistent prediction of heavy precipitation from mean values
Extreme precipitation can cause flooding, result in substantial damages and have detrimental effects on ecosystems1,2. Climate adaptation must therefore account for the greatest precipitation amounts that may be expected over a certain time span3. The recurrence of extreme-to-heavy precipitation is notoriously hard to predict, yet cost–benefit estimates of mitigation and successful climate adaptation will need reliable information about percentiles for daily precipitation. Here we present a new and simple formula that relates wet-day mean precipitation to heavy precipitation, providing a method for predicting and downscaling daily precipitation statistics. We examined 32,857 daily rain-gauge records from around the world and the evaluation of the method demonstrated that wet-day precipitation percentiles can be predicted with high accuracy. Evaluations against independent data demonstrated high skill in both space and time, indicating a highly robust methodology.
Located in Resources / Climate Science Documents
File PDF document Beyond Reserves and Corridors: Policy Solutions to Facilitate the Movement of Plants and Animals in a Changing Climate
As the Earth’s climate changes, many species will have to move across human-dominated landscapes to track suitable climates and changing ecosystems. Given the magnitude of projected future climate change, expanding and connecting reserve networks—two of the most commonly recommended adaptation strategies for protecting biodiversity in a changing climate—will be necessary but insufficient for preventing climate-induced extinctions. In the present article, we explore additional policy options that could be implemented to facilitate species movements in a changing climate. We discuss both existing and new policies that have the potential to increase landscape permeability, protect species on the move, and physically move species to address climate change. Keywords: climate change, adaptation, species movement, policy
Located in Resources / Climate Science Documents
File PDF document Ecosystem Processes and Human Influences Regulate Streamflow Response to Climate Change at Long-Term Ecological Research Sites
Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-deficit ecosystems. Streamflow was correlated with climate variability indices (e.g., the El Niño–Southern Oscillation, the Pacific Decadal Oscillation, the North Atlantic Oscillation), especially in seasons when vegetation influences are limited. Air temperature increased significantly at 17 of the 19 sites with 20- to 60-year records, but streamflow trends were directly related to climate trends (through changes in ice and snow) at only 7 sites. Past and present human and natural disturbance, vegetation succession, and human water use can mimic, exacerbate, counteract, or mask the effects of climate change on streamflow, even in reference basins. Long-term ecological research sites are ideal places to disentangle these processes.
Located in Resources / Climate Science Documents
File PDF document The Disappearing Cryosphere: Impacts and Ecosystem Responses to Rapid Cryosphere Loss
The cryosphere—the portion of the Earth’s surface where water is in solid form for at least one month of the year—has been shrinking in response to climate warming. The extents of sea ice, snow, and glaciers, for example, have been decreasing. In response, the ecosystems within the cryosphere and those that depend on the cryosphere have been changing. We identify two principal aspects of ecosystem-level responses to cryosphere loss: (1) trophodynamic alterations resulting from the loss of habitat and species loss or replacement and (2) changes in the rates and mechanisms of biogeochemical storage and cycling of carbon and nutrients, caused by changes in physical forcings or ecological community functioning. These changes affect biota in positive or negative ways, depending on how they interact with the cryosphere. The important outcome, however, is the change and the response the human social system (infrastructure, food, water, recreation) will have to that change. Keywords: cryosphere, ecosystem response, environmental observatories
Located in Resources / Climate Science Documents
File PDF document Management practices increase the impact of roads on plant communities in forests
The question of the interaction between management practices and road effects on forest biodiversity is of critical interest for sustainable practices and the conservation of forest communities. Forest road improvement and easier access to stand interiors via skid trails, are integral components of management. We tested whether skid trails and the use of limestone gravel for road improvement extended the road effect on plant communities further into forest habitats in a nutrient-poor environment. We analyzed how road distance and skid trail presence affect stand plant communities by examining species compo- sition, distribution of biological and ecological traits, individual species responses and environmental plant indicator values. All results showed that the road effect extended deeper into forest on skid trails, i.e. up to 20 m and even 60 m, than off skid trails, i.e. up to 10 m. Skid trails served as penetration con- duits for open-habitat species probably due to forest machinery traffic. The road effect was more damag- ing to forest species and less-competitive species on skid trails. Additionally, limestone gravel modified the acidity of adjacent poor soils, leading to a shift in species composition and to a colonization of the stand interior by basophilous species. We advocate minimizing skid trail density and using endogenous materials for roads to keep sections of forest large enough to conserve disturbance-sensitive forest species. The interaction found between road effects and management practices underlines the need to adopt a landscape-scale view and to consider multiple anthropogenic impacts in order to effectively preserve forest plant communities.
Located in Resources / Climate Science Documents
File PDF document Toward a Global Biodiversity Observing System
Tracking biodiversity change is increasingly important in sustaining ecosystems and ultimately human well-being.
Located in Resources / Climate Science Documents
File PDF document Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services Technical Input to the 2013 National Climate Assessment
KEY FINDINGS Biodiversity and ecosystems are already more stressed than at any comparable period of human history. Climate change almost always exacerbates the problems caused by other environmental stressors including: land use change and the consequent habitat fragmentation and degradation; extraction of timber, fish, water, and other resources; biological disturbance such as the introduction of non-native invasive species, disease, and pests; and chemical, heavy metal, and nutrient pollution. As a corollary, one mechanism for reducing the negative impacts of climate change is a reduction in other stressors. Climate change is causing many species to shift their geographical ranges, distributions, and phenologies at faster rates than previously thought. Changes in terrestrial plant and animal species ranges are shifting the location and extent of biomes, and altering ecosystem structure and functioning. These rates vary considerably among species. Terrestrial species are moving up in elevation at rates 2 to 3 times greater than initial estimates. Despite faster rates of warming in terrestrial systems compared to ocean environments, the velocity of range shifts for marine taxa exceeds those reported for terrestrial species. Species and populations that are unable to shift their geographic distributions or have narrow environmental tolerances are at an increased risk of extinction. There is increasing evidence of population declines and localized extinctions that can be directly attributed to climate change. Ecological specialists and species that live at high altitudes and latitudes are particularly vulnerable to climate change. Overall, the impacts of climate change are projected to result in a net loss of global biodiversity and major shifts in the provision of ecosystem services. For example, the range and abundance of economically important marine fish are already changing due to climate change and are projected to continue changing such that some local fisheries are very likely to cease to be viable, whereas others may become more valuable if the fishing community can adapt. Range shifts will result in new community assemblages, new associations among species, and promote interactions among species that have not existed in the past. Changes in the spatial distribution and seasonal timing of flora and fauna within marine, aquatic, and terrestrial environments can result in trophic mismatches and asynchronies. Novel species assemblages can also substantially alter ecosystem structure and function and the distribution of ecosystem services. Changes in precipitation regimes and extreme events can cause ecosystem transitions, increase transport of nutrients and pollutants to downstream ecosystems, and overwhelm the ability of natural systems to mitigate harm to people from these events. Changes in extreme events affect systems differentially, because different thresholds are crossed. For example, more intense storms and increased drought coupled with warming can shift grasslands into shrublands, or facilitate domination by other grass types (for example, mixed grass to C-4 tallgrass). More heavy rainfall also increases movement of nutrients and pollutants to downstream ecosystems, restructuring processes, biota, and habitats. As a consequence, regulation of drinking water quality is very likely to be strained as high rainfall and river discharge lead to higher levels of nitrogen in rivers and greater risk of waterborne disease outbreaks. S-2 Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services | Executive Summary Technical Input to the 2013 National Climate Assessment Changes in winter have big and surprising effects on ecosystems and their services. Changes in soil freezing, snow cover, and air temperature have affected carbon sequestration, decomposition, and carbon export, which influence agricultural and forest production. Seasonally snow-covered regions are especially susceptible to climate change as small changes in temperature or precipitation may result in large changes in ecosystem structure and function. Longer growing seasons and warmer winters are enhancing pest outbreaks, leading to tree mortality and more intense and extensive fires. For winter sports and recreation, future economic losses are projected to be high because of decreased or unreliable snowfall. The ecosystem services provided by coastal habitats are especially vulnerable to sea-level rise and more severe storms. The Atlantic and Gulf of Mexico coasts are most vulnerable to the loss of coastal protection services provided by wetlands and coral reefs. Along the Pacific coast long-term erosion of dunes due to increasing wave heights is projected to be an increasing problem for coastal communities. Beach recreation is also projected to suffer due to coastal erosion. Other forms of recreation are very likely to improve due to better weather, and the net effect is likely a redistribution of the industry and its economic impact, with visitors and tourism dollars shifting away from some communities in favor of others. Climate adaptation has experienced a dramatic increase in attention since the last National Climate Assessment and become a major emphasis in biodiversity conservation and natural resource policy and management. Federal and State agencies are planning for and integrating climate change research into resource management and actions to address impacts of climate change based on historical impacts, future vulnerabilities, and observations on the ground. Land managers have realized that static protected areas will not be sufficient to conserve biodiversity in a changing climate, requiring an emphasis on landscape-scale conservation, connectivity among protected habitats, and sustaining ecological functioning of working lands and waters. Agile and adaptive management approaches are increasingly under development, including monitoring, experimentation, and a capacity to evaluate and modify management actions. Risk-based framing and stakeholder-driven scenario planning will be essential in enhancing our ability to respond to the impacts of climate change. Climate change responses employed by other sectors (for example, energy, agriculture, transportation) are creating new ecosystem stresses, but also can incorporate ecosystem- based approaches to improve their efficacy. Ecosystem-based adaptation has emerged as a framework for understanding the role of ecosystem services in moderating climate impacts on people, although this concept is currently being used more on an international scale than within the United States. Ecological monitoring efforts need to be improved and better coordinated among Federal and State agencies to ensure that the impacts of climate change are adequately observed as well as to support ecological research, management, assessment, and policy. As species and ecosystem boundaries shift to keep pace with climate change, improved and better-integrated research, monitoring, and assessment efforts will be needed at national and global scales. Existing monitoring networks in the United States are not well suited for detecting and attributing the impacts of climate change to the wide range of affected species at the appropriate spatio-temporal scales.
Located in Resources / Climate Science Documents
File PDF document Water and bioenergy
Water management expert Arjen Hoekstra, together with environmental science and energy specialists, has analysed the impact of increasing the use of biofuels in the transport sector on global water demand.
Located in Resources / Climate Science Documents
File PDF document Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon
bserved increases in the mineralization rate of labile organic carbon (LOC) in the presence of black carbon (BC) have led to speculation that corresponding decreases in non-pyrogenic (i.e. non- BC) soil organic carbon (npSOC) could significantly reduce or negate the C sequestration benefit of BC in soils. Here we show that the potential effect of an increased LOC decomposition rate on long-term npSOC stocks is negligible, even when using assump- tions that would favour large losses, potentially causing no more than 3–4 % loss of npSOC over 100 years if 50 % of above-ground crop residues were converted to BC annually. Conversely, if the BC- stimulated enhanced stabilization of npSOC that has been observed in laboratory trials is extrapolated to the long-term, it would greatly increase soil carbon stocks by 30–60 %. Annual additions of BC derived from crop residues would increase total SOC (including both BC and npSOC) by an amount five times greater than the potential increase from enhanced stabilization and an order of magnitude greater than losses of npSOC caused by annual removals of biomass to provide BC feedstock. Keywords Black carbon 􏰓 Soil organic carbon 􏰓 Terrestrial carbon cycle 􏰓 Fire 􏰓 Biochar
Located in Resources / Climate Science Documents