Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Expertise Search / Badash, Joseph
4417 items matching your search terms.
Filter the results.
Item type


























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document The Greenhouse Is Making the Water-Poor Even Poorer
How bad will global warming get? The question has long been cast in terms of how hot the world will get. But perhaps more important to the planet’s inhabitants will be how much rising greenhouse gases crank up the water cycle. Theory and models predict that a strengthening greenhouse will increase precipitation where it is already relatively high—tropical rain forests, for example— and decrease it where it is already low, as in the subtropics. SCIENCE VOL 336 27 APRIL 2012
Located in Resources / Climate Science Documents
File PDF document Plant Species Richness and Ecosystem Multifunctionality in Global Drylands
Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.
Located in Resources / Climate Science Documents
File PDF document Financial Costs of Meeting Global Biodiversity Conservation Targets: Current Spending and Unmet Needs
World governments have committed to halting human-induced extinctions and safeguarding important sites for biodiversity by 2020, but the financial costs of meeting these targets are largely unknown. We estimate the cost of reducing the extinction risk of all globally threatened bird species (by ≥1 International Union for Conservation of Nature Red List category) to be U.S. $0.875 to $1.23 billion annually over the next decade, of which 12% is currently funded. Incorporating threatened nonavian species increases this total to U.S. $3.41 to $4.76 billion annually. We estimate that protecting and effectively managing all terrestrial sites of global avian conservation significance (11,731 Important Bird Areas) would cost U.S. $65.1 billion annually. Adding sites for other taxa increases this to U.S. $76.1 billion annually. Meeting these targets will require conservation funding to increase by at least an order of magnitude.
Located in Resources / Climate Science Documents
File PDF document Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security
Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide–reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.
Located in Resources / Climate Science Documents
File PDF document Carbon Storage with Benefits
Biochar—a material related to charcoal—has the potential to benefit farming as well as mitigate climate change.
Located in Resources / Climate Science Documents
File PDF document Biotic Multipliers of Climate Change
A focus on species interactions may improve predictions of the effects of climate change on ecosystems.
Located in Resources / Climate Science Documents
File PDF document Old Trees: Extraction, Conservation Can Coexist
BECAUSE LARGE OLD TREES ARE ESSENTIAL FOR FOREST ECOSYSTEM INTEGRITY AND BIODIVERsity, timber extraction in managed forests should preferentially be concentrated where large old trees are least likely to develop (“Global decline in large old trees,” D. B. Lindenmayer et al., Perspectives, 7 December 2012, p. 1305). However, timber extraction and the conservation of large old trees are not necessarily mutually exclusive. Current forest policy and management practices in Flanders, Belgium, aim to convert even-aged stands (areas in which trees are all the same age) to stands with trees of varying ages in an effort to increase forest ecosystem stability and resilience and to allow trees to grow old. As part of their ecologically sustainable forest management, public forest managers have adopted a large-tree retention approach [see also (1, 2)]. Tree islands within stands managed for production of high-quality timber are reserved for conservation, and trees within these islands will never be extracted. Large old trees of commercially valuable species that have grown beyond the commercially optimal dimensions will not be logged either. And no tree beyond a threshold diameter [currently set at dbh (diameter at breast height) of more than 102 cm] will ever be logged. The strip-shelterwood system (in which trees are cut in linear strips and surrounding trees are given time to grow old) and the coppice-with-standards system (in which some trees are left to grow while others around them are cut) are two examples of forest management that allows the combination of sustainable forest exploitation and conservation of large old trees
Located in Resources / Climate Science Documents
File PDF document What Does Zero Deforestation Mean?
Ambiguous defi nitions and metrics create risks for forest conservation and accountability. SCIENCE VOL 342
Located in Resources / Climate Science Documents
File PDF document Physical Laws Shape Biology
IN THE PERSPECTIVE “A DYNAMICAL-SYSTEMS VIEW OF STEM CELL biology” (12 October 2012, p. 215), C. Furusawa and K. Kaneko discuss the relevance of dynamic systems biology approaches and the concept of “attractors” to understand cell differentiation and proliferation. We share their excitement in using computational models that apply physical laws to cell fate decision.
Located in Resources / Climate Science Documents
File PDF document Water in the Balance
Satellite data may enable improved management of regional groundwater reserves. VOL 340 SCIENCE
Located in Resources / Climate Science Documents