-
Implications of Limiting CO2 Concentrations for Land Use and Energy
-
Limiting atmospheric carbon dioxide (CO2) concentrations to low levels requires strategies to manage anthropogenic carbon emissions from terrestrial systems as well as fossil fuel and industrial sources. We explore the implications of fully integrating terrestrial systems and the energy system into a comprehensive mitigation regime that limits atmospheric CO2 concentrations. We find that this comprehensive approach lowers the cost of meeting environmental goals but also carries with it profound implications for agriculture: Unmanaged ecosystems and forests expand, and food crop and livestock prices rise. Finally, we find that future improvement in food crop productivity directly affects land-use change emissions, making the technology for growing crops potentially important for limiting atmospheric CO2 concentrations.
Located in
Resources
/
Climate Science Documents
-
Importance of matrix habitats in maintaining biological diversity
-
Matrix management matters because formal reserve systems will never cover more than a small fraction of the globe.
Located in
Resources
/
Climate Science Documents
-
Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance
-
Concluding sentence of the abstract: The trend towards more intensive agriculture and logging is likely to make Europe’s land surface a significant source of greenhouse gases. The development of land management policies which aim to reduce greenhouse-gas emissions should be a priority.
Located in
Resources
/
Climate Science Documents
-
Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance
-
Climate change negotiations aim to reduce net greenhouse-gas emissions by encouraging direct reductions of emissions and crediting countries for their terrestrial greenhouse-gas sinks. Ecosystem carbon dioxide uptake has offset nearly 10% of Europe’s fossil fuel emissions, but not all of this may be creditable under the rules of the Kyoto Protocol. Although this treaty recognizes the importance of methane and nitrous oxide emissions, scientific research has largely focused on carbon dioxide. Here we review recent estimates of European carbon dioxide, methane and nitrous oxide fluxes between 2000 and 2005, using both top-down estimates based on atmospheric observations and bottom-up estimates derived from ground-based measure- ments. Both methods yield similar fluxes of greenhouse gases, suggesting that methane emissions from feedstock and nitrous oxide emissions from arable agriculture are fully compensated for by the carbon dioxide sink provided by forests and grass- lands. As a result, the balance for all greenhouse gases across Europe’s terrestrial biosphere is near neutral, despite carbon sequestration in forests and grasslands. The trend towards more intensive agriculture and logging is likely to make Europe’s land surface a significant source of greenhouse gases. The development of land management policies which aim to reduce greenhouse-gas emissions should be a priority.
Located in
Resources
/
Climate Science Documents
-
Improved probability of detection of ecological “surprises”
-
Ecological “surprises” are defined as unexpected findings about the natural environment. They are critically important in ecology because they are catalysts for questioning and reformulating views of the natural world, help shape assessments of the veracity of a priori predictions about ecological trends and phenomena, and underpin questioning of effectiveness of resource management. Despite the importance of ecological surprises, major gaps in understanding remain about how studies might be done differently or done better to improve the ability to identify them. We outline the kinds of ecological surprises that have arisen from long-term research programs that we lead in markedly different ecosystems around the world. Based on these case studies, we identify important lessons to guide both existing studies and new investigations to detect ecological surprises more readily, better anticipate unusual ecological phenomena, and take proactive steps to plan for and alleviate “undesirable” ecological surprises. Some of these lessons include: (i) maintain existing, and instigate new, long-term studies; (ii) conduct a range of kinds of parallel and concurrent research in a given target area; (iii) better use past literature and conceptual models of the target ecosystem in posing good questions and developing hypotheses and alternative hypotheses; and (iv) increase the capacity for ecological research to take advantage of opportunities arising from major natural disturbances. We argue that the increased anticipatory capability resulting from these lessons is critical given that ecological surprises may become more prevalent because of climate change and multiple and interacting environmental stressors.
Located in
Resources
/
Climate Science Documents
-
In the News
-
-
In the News
-
-
In the News
-
-
In the News
-
-
In the News
-