-
Formation of soil organic matter via biochemical and physical pathways of litter mass loss
-
Soil organic matter is the largest terrestrial carbon pool1. The pool size depends on the balance between formation of soil organic matter from decomposition of plant litter and its mineralization to inorganic carbon. Knowledge of soil organic matter formation remains limited2 and current C numerical models assume that stable soil organic matter is formed primarily from recalcitrant plant litter3 . However, labile components of plant litter could also form mineral-stabilized soil organic matter4. Here we followed the decomposition of isotopically labelled above-ground litter and its incorporation into soil organic matter over three years in a grassland in Kansas, USA, and used laboratory incubations to determine the decay rates and pool structure of litter-derived organic matter. Early in decomposition, soil organic matter formed when non-structural compounds were lost from litter. Soil organic matter also formed at the end of decomposition, when both non-structural and structural compounds were lost at similar rates. We conclude that two pathways yield soil organic matter efficiently. A dissolved organic matter–microbial path occurs early in decomposition when litter loses mostly non-structural compounds, which are incorporated into microbial biomass at high rates, resulting in efficient soil organic matter formation. An equally efficient physical-transfer path occurs when litter fragments move into soil.
Located in
Resources
/
Climate Science Documents
-
The global volume and distribution of modern groundwater
-
Groundwater is important for energy and food security, human health and ecosystems. The time since groundwater was recharged—or groundwater age—can be important for diverse geologic processes, such as chemical weathering, ocean eutrophication and climate change. However, measured groundwater ages range from months to millions of years. The global volume and distribution of groundwater less than 50 years old—modern groundwater that is the most recently recharged and also the most vulnerable to global change—are unknown. Here we combine geochemical, geologic, hydrologic and geospatial data sets with numerical simulations of groundwater and analyse tritium ages to show that less than 6% of the groundwater in the uppermost portion of Earth’s landmass is modern. We find that the total groundwater volume in the upper 2 km of continental crust is approximately 22.6 million km3 , of which 0.1–5.0 million km3 is less than 50 years old. Although modern groundwater represents a small percentage of the total groundwater on Earth, the volume of modern groundwater is equivalent to a body of water with a depth of about 3 m spread over the continents. This water resource dwarfs all other components of the active hydrologic cycle.
Located in
Resources
/
Climate Science Documents
-
Future temperature in southwest Asia projected to exceed a threshold for human adaptability
-
A human body may be able to adapt to extremes of dry-bulb temperature (commonly referred to as simply temperature) through perspiration and associated evaporative cooling pro- vided that the wet-bulb temperature (a combined measure of temperature and humidity or degree of ‘mugginess’) remains below a threshold of 35 ◦ C. (ref. 1). This threshold defines a limit of survivability for a fit human under well-ventilated outdoor conditions and is lower for most people. We project using an ensemble of high-resolution regional climate model simulations that extremes of wet-bulb temperature in the region around the Arabian Gulf are likely to approach and exceed this critical threshold under the business-as-usual scenario of future greenhouse gas concentrations. Our results expose a specific regional hotspot where climate change, in the absence of significant mitigation, is likely to severely impact human habitability in the future.
Located in
Resources
/
Climate Science Documents
-
Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests
-
Wildfires play a key role in the boreal forest carbon cycle (1,2) , and models suggest that accelerated burning will increase boreal C emissions in the coming century (3). However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions (4). We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan bo- real forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord (5) led to simulated C losses of 1.4 kg C m−2 (12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m−2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends (6) and future projections (7) point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions (8) that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.
Located in
Resources
/
Climate Science Documents
-
National post-2020 greenhouse gas targets and diversity-aware leadership
-
Achieving the collective goal of limiting warming to below 2 ◦ C or 1.5 ◦ C compared to pre-industrial levels requires a transition towards a fully decarbonized world. Annual greenhouse gas emissions on such a path in 2025 or 2030 can be allocated to individual countries using a variety of allocation schemes. We reanalyse the IPCC literature allocation database and provide country-level details for three approaches. At this stage, however, it seems utopian to assume that the international community will agree on a single allocation scheme. Here, we investigate an approach that involves a major-economy country taking the lead. In a bottom-up manner, other countries then determine what they consider a fair comparable target, for example, either a ‘per-capita convergence’ or ‘equal cumulative per-capita’ approach. For example, we find that a 2030 target of 67% below 1990 for the EU28, a 2025 target of 54% below 2005 for the USA or a 2030 target of 32% below 2010 for China could secure a likely chance of meeting the 2◦C target in our illustrative default case. Comparing those targets to post-2020 mitigation targets reveals a large gap. No major emitter can at present claim to show the necessary leadership in the concerted effort of avoiding warming of 2 ◦ C in a diverse global context.
Located in
Resources
/
Climate Science Documents
-
Impact of ocean acidification on the structure of future phytoplankton communities
-
Phytoplankton form the foundation of the marine food web and regulate key biogeochemical processes. These organisms face multiple environmental changes1, including the decline in ocean pH (ocean acidification) caused by rising atmospheric pCO2 (ref. 2). A meta-analysis of published experimental data assessing growth rates of different phytoplankton taxa under both ambient and elevated pCO2 conditions revealed a signif- icant range of responses. This effect of ocean acidification was incorporated into a global marine ecosystem model to explore how marine phytoplankton communities might be impacted over the course of a hypothetical twenty-first century. Results emphasized that the differing responses to elevated pCO2 caused sufficient changes in competitive fitness between phytoplankton types to significantly alter community structure. At the level of ecological function of the phytoplankton community, acidification had a greater impact than warming or reduced nutrient supply. The model suggested that longer timescales of competition- and transport-mediated adjustments are essential for predicting changes to phytoplankton community structure.
Located in
Resources
/
Climate Science Documents
-
Megaproject reclamation and climate change
-
Megaprojects such as oil sands mining require large-scale and long-term closure and reclamation plans. Yet these plans are created and approved without considering future climate and hydrological conditions, jeopardizing the sustainability of reclaimed landscapes.
Located in
Resources
/
Climate Science Documents
-
Australia is ‘free to choose’ economic growth and falling environmental pressures
-
Over two centuries of economic growth have put undeniable pressure on the ecological systems that underpin human well-being. While it is agreed that these pressures are increasing, views divide on how they may be alleviated. Some suggest technological advances will automatically keep us from transgressing key environmental thresholds; others that policy reform can reconcile economic and ecological goals; while a third school argues that only a fundamental shift in societal values can keep human demands within the Earth’s ecological limits. Here we use novel integrated analysis of the energy–water–food nexus, rural land use (including biodiversity), material flows and climate change to explore whether mounting ecological pressures in Australia can be reversed, while the population grows and living standards improve. We show that, in the right circumstances, economic and environmental outcomes can be decoupled. Although economic growth is strong across all scenarios, environmental performance varies widely: pressures are projected to more than double, stabilize or fall markedly by 2050. However, we find no evidence that decoupling will occur automatically. Nor do we find that a shift in societal values is required. Rather, extensions of current policies that mobilize technology and incentivize reduced pressure account for the majority of differences in environmental performance. Our results show that Australia can make great progress towards sustainable prosperity, if it chooses to do so.
Located in
Resources
/
Climate Science Documents
-
METABOLISM AS A CURRENCY AND CONSTRAINT IN ECOLOGY Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy
-
We test for the existence of asymmetries in consumer–resource thermal responses by analy- sing an extensive database on thermal response curves of ecological traits for 309 species spanning 15 orders of magnitude in body size from terrestrial, marine and freshwater habitats. We find that asymmetries in consumer–resource thermal responses are likely to be a common occurrence.Overall, our study reveals the importance of asymmetric thermal responses in consumer–resource dynamics. In particular, we identify three general types of asymmetries: (i) different levels of performance of the response, (ii) different rates of response (e.g. activation energies) and (iii) different peak or optimal temperatures. Such asymmetries should occur more frequently as the climate changes and species’ geographical distributions and phenologies are altered, such that previously noninteracting species come into contact.By using characteristics of trophic interactions that are often well known, such as body size, foraging strategy, thermy and environmental temperature, our framework should allow more accurate predictions about the thermal dependence of consumer–resource interactions. Ultimately, integration of our theory into models of food web and ecosystem dynamics should be useful in understanding how natural systems will respond to current and future temperature change.
Located in
Resources
/
Climate Science Documents
-
Sensitivity of a Riparian Large Woody Debris Recruitment Model to the Number of Contributing Banks and Tree Fall Pattern
-
Riparian large woody debris (LWD) recruitment simulations have traditionally applied a random angle of tree fall from two well-forested stream banks. We used a riparian LWD recruitment model (CWD, version 1.4) to test the validity these assumptions. Both the number of contributing forest banks and predominant tree fall direction significantly influenced simulated riparian LWD delivery, but there was no apparent interaction between these factors. Pooled across all treatments, the average predicted 300-year cumulative LWD recruitment was 77.1 m”/lOO m reach with both banks forested compared to 49.3 m’/lOO
m reach when only one side was timbered. Total recruitment within bank cover categories (one versus both forested) depended on the directionality of the falling stem. When only one bank was forested, the CWD model predicted the same riparian LWD recruitment for the random and CWD default tree fall patterns
(-39 m3/100 m reach), the pattern biased toward the channel yielded twice this volume, a pattern quartering toward the channel produced 64% more LWD, and the pattern paralleling the channel contributed almost 30% less than random. With both banks forested, the random, default, and quartering simulations resulted in similar delivery (about 78 m3/100 m reach), the pattern biased toward the channel contributed almost 14% more LWD, and the parallel pattern yielded 26% less. Because CWD is similar in design and operation to other riparian LWD recruitment models, it follows that any simulation of wood delivery to streams should be checked for their consistency with local forest cover and tree failure patterns.
Located in
Resources
/
Climate Science Documents